Correlation of axonal regeneration and slow component B in two branches of a single axon.

نویسندگان

  • J R Wujek
  • R J Lasek
چکیده

We investigated the relationship between slow axonal transport and axonal regeneration in the rat dorsal root ganglion (DRG) cell. The DRG cell sends out a single axon which bifurcates within the ganglion; one axon proceeds centrally into the spinal cord and the other proceeds peripherally. The rate of axonal regeneration is approximately 2 times faster for the peripheral processes (4.6 +/- 0.9 mm/day) than for the central processes (2.1 +/- 0.5 mm/day). The peripheral and central processes regenerate through dissimilar environments (sciatic nerve and dorsal root, respectively); thus, environmental factors may account for the differences in regeneration rates. We tested this possibility by measuring the regeneration of motoneuron axons within the ventral root (histologically similar to the dorsal root). The motoneuron regeneration rate within the ventral root is similar to the motoneuron regeneration rate within the sciatic nerve, suggesting that factors within the DRG cell produce the differences in regeneration rate. Slow axonal transport is classified into two distinct components: slow component a (SCa), corresponding to the microtubule/neurofilament network of the axonal cytoskeleton, and slow component b (SCb), corresponding to the microfilament complex/axoplasmic matrix. The transport rate of SCa and SCb in the peripheral sensory axons is approximately 2 times faster than their counterparts in the central sensory axons. SCa moves at 1.0 to 3.0 mm/day in the peripheral processes and 0.5 to 1.0 mm/day in the central processes; SCb moves at 3.5 to 6.5 mm/day in the peripheral processes and 2.0 to 3.5 mm/day in the central processes. In each branch of the DRG cell, the rate of axonal regeneration is similar to the rate of SCb transport. These results support the hypothesis that SCb is a rate-limiting factor in axonal regeneration because of its role in providing the cytoskeletal elements which are directly involved in the motility of the growth cone and elongation of the axon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: the trembler as an in vivo model for Schwann cell-axon interactions.

The thickness of the myelin sheath in normal myelinated nerve is proportional to the diameter of the axon. In the demyelinating mutant mouse, Trembler, not only is the thickness of the myelin sheath reduced, but the caliber of associated axons is smaller. This correlation suggests that the interaction between axons and Schwann cells may affect the shape and function of axons as well as properti...

متن کامل

Brain-derived neurotrophic factor and neurotrophin-4/5 stimulate growth of axonal branches from regenerating retinal ganglion cells.

To investigate the influences of growth factors on axonal regeneration in the mammalian CNS, we used intracellular tracers to quantitate the effects of brain-derived neurotrophic factor (BDNF), neurotrophin (NT)-4/5, or NT-3 on individual retinal ganglion cell (RGC) axons in the retinas of adult rats after optic nerve transection. A single injection of BDNF or the prolonged administration of NT...

متن کامل

In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration.

In the peripheral nervous system (PNS), damaged axons regenerate successfully, whereas axons in the CNS fail to regrow. In neurons of the dorsal root ganglia (DRG), which extend branches to both the PNS and CNS, only a PNS lesion but not a CNS lesion induces axonal growth. How this differential growth response is regulated in vivo is only incompletely understood. Here, we combine in vivo time-l...

متن کامل

The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons

This study of the slow component of axonal transport was aimed at two problems: the specific identification of polypeptides transported into the axon from the cell body, and the identification of structural polypeptides of the axoplasm. The axonal transport paradigm was used to obtain radioactively labeled axonal polypeptides in the rat ventral motor neuron and the cat spinal ganglion sensory n...

متن کامل

The Healing Effect of Silicone Gel on Sciatic Nerve Injuries in Experimental Rat

BACKGROUND Peripheral nerve repair is often complicated by fibroblastic scar formation, nerve dysfunction, and traumatic neuroma formation. Use of silicone may improve outcomes of these repairs. In this study, we tried to evaluate effectiveness of silicone gel on rats’ sciatic nerve repair, axon regeneration and scar formation around and in the nervous tissues. METHODS This experimental stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 1983